BANKURA UNIVERSITY

CBCS SYLLABUS

for

M.Sc in Geo-informatics

(Two Year Semester System)

w.e.f. July, 2018

BANKURA UNIVERSITY BANKURA WEST BENGAL PIN 722155

Syllabus for M.Sc in Geo-informatics

Division of Marks

SEM I: 250 SEM II: 300 SEM III: 350 SEM IV: 300

Structure of the syllabus (Semester I)

SI.	Paper code		Marks			
No.	Taper code	Name of the Paper	Final Exam	Internal Assignment	Total	Credit
1	GI 101T	Basics of Earth System & Remote sensing	40	10	50	4
2	GI 102T	Principle of Information Science & Computer Networking	40	10	50	4
3	GI 103P	Applied Statistics and computation	40	10	50	4
4	GI 104P	Computer Basic Programming	40	10	50	4
5	Internal Assignment	Assignment (15), Seminar Presentation (25), Teacher's Assessment (10)	40	10	50	4
Total			200	50	250	20

Structure of the syllabus (Semester II)

SI.	Paper code		Marks			
No.		Name of the Paper	Final Exam	Internal Assignment	Total	Credit
1	GI 201T	Photogrammetry and Digital Image processing	40	10	50	4
2	GI 202T	Introduction to Geographical Information System & spatial modelling	40	10	50	4
3	GI 203T	Thermal, Microwave Remote Sensing and Application	40	10	50	4
4	GI 204P	Digital Image Processing	40	10	50	4
5	GI 205P	Digital Photogrammetry	40	10	50	4
6	Internal Assignment	Assignment (15), Seminar Presentation (25), Teacher's Assessment (10)	40	10	50	4
Total			200	50	300	24

SI.	Paper code			Marks		
No.	l'aper coue	Name of the Paper	Final Exam	Internal Assignment	Total	Credit
1	GI 301T	Database Management System, GNNS and GPS	40	10	50	4
2	GI 302T	Research Methods and Methodology	40	10	50	4
Major	Elective (any o	one)				
3	GI 303EA	Geo-Informatics for resource and disaster management	40	10	50	4
4	GI 303EB	Urban Development and Utility management	40	10	50	4
5	GI 303EC	Remote Sensing for forest Management	40	10	50	4
6	GI 303EP	Practical project on Major elective	80	20	100	8
7	GI 304P	GIS and GNNS	40	10	50	4
8	GI 305P	Surveying and Field work	40	10	50	4
Minor	Elective					
8	GI 306ME A	Application of Spatial Science for Community Development	25	0	0	2
9	GI 306ME B	Remote Sensing and natural resource development	25	0	0	2
Total			280	70	350	28

Structure of the syllabus (Semester III)

Structure of the syllabus (Semester IV)

SI.	Paper code					
No.		Name of the Paper	Final Exam	Interna l Assignment	Total	Credit
1	GI 401P	Grand Viva	50	0	50	4
2	GI 402P	Internship	0	0	100	8
3	GI 403P	Research Project	100	0	100	8
5	Internal Assignment	Assignment (15), Seminar Presentation (25), Teacher's Assessment (10)	40	10	50	4
Total	•	•	180	10	300	24

Semester I

Basics of Earth System & Remote sensing

Course Code: GI 101T

Credit 4

Unit-1 Basic of Earth System

- 1.1 Understanding Earth, its Bio-physical components, Energy systems, Geo-Biochemical systems, Earth process; energy types; transform and interactions
- 1.2 Different Component of Earth: Lithosphere, Hydrosphere and Atmosphere
- 1.3 Terminology of earth System: Size, shape, orbit, rotation and space & time component
- 1.4 Concept of earth coordinate, spheroid, datum and UTM projection system, topographical map

Unit-2 Principle of Remote Sensing and Aerial photograph

- 2.1 Process and function of RS, Fundamental law in RS (Source of energy, radiation law, Stefan-Boltzman law, Wien's law, Kirchhoff's law etc.)
- 2.2 Basic Concept in RS: EMR, EMS, Sensor-Resolution (Spatial, Spectral, Radiometric and Temporal), Atmospheric window, spectral signature etc.
- 2.3 Principle of photography (Scale, resolution, projection, flight plan, overlap)
- 2.4 Types of photography, elements of photography, Type of aerial camera, stereoscopic viewing

Unit-3 Sensor, Platform and satellite programme

- 3.1 Sensor system: Framing and Scanning system, Whiskbroom scanner, Push-broom scanner, side looking scanner, hyper spectral scanning and imaging
- 3.2 Types and quality of sensor: Imaging and non-imaging, active and passive
- 3.3 Concept of Remote Sensing Platform: Types of platform, Orbital Characteristics: Coverage, passes, pointing accuracy, Geostationary, sun synchronous, Semisynchronous orbit and Quasi-zenith satellite orbit
- 3.4 Satellite programme in the world, fundamental elements (Escape velocity, orbit, data product and their types), importance of satellite programme

Reference books

- 1. Lilesand and Keifer (2000), Introduction to Remote sensing and Image Interpretation; John Willy & sons Ltd., New York
- 2. James B. Campbell (1996), Introduction to Remote Sensing; Taylor & Francis, London
- 3. Joseph George (2004), Fundamentals of Remote Sensing; Universities Press (India) Pvt.
- 4. Hayesm L. (1991), Introduction to Remote Sensing; Taylor and Fransis, London
- 5. Paul. J. Gibson (2000), Introductory to Remote Sensing; Taylor & Francis, London
- 6. Steers J.A. (1955), The Unstable Earth, Methuen & Co
- 7. Selby M.J. 91985), Earth's Changing Surface, Oxford
- 8. Sarkar Ashis (2008), Practical Geography, A Systematic Approach, Orient BlackSwan

Principle of Information Science & Computer Networking

Course Code: GI 102T

Credit 4

Unit-1 Preface to Computer

- 1.1 Exploring computers and their uses: computers for individual users, computers for organizations, parts of a computer system, role of computer users
- 1.2 Processing Data: difference between data and information, how computers process data, factors affecting processing speed, modem CPUs
- 1.3 Operating system and number representation: OS Functions and service, Windows, number system (bit & byte), binary number, octal number
- 1.4 Networks: networking basics, uses of a network, types of networks: LAN & WAN, hybrid networks, server-based networks, client/server networks, peer-to-peer networks, network topologies and protocols

Unit-2 Introduction to Information technology

- 2.1 Meaning, scope and development of Information Technology
- 2.2 Concept and overview of Information system
- 2.3 Components of Information System
- 2.4 Information design, analysis and management

Unit-3 OS & Number System

- 3.1 Work of OS
- 3.2 Working principle of OS
- 3.3 Interaction between OS and Application system
- 3.4 Number System

Reference books

- 1. John L. Hennesy and David A. Patterson (2004), Patterson Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufmann
- 2. O'Brier, J.A. (1999), Management Information Sysytem, Irwin McGraw Hill
- 3. Harold Abelson et al. (1996), Structure and Interpretation of Computer Programme, MIT Press
- 4. Turban E. Et al (2000), Introduction to Information Technology
- 5. Laurini R. (2001), Information System for Urban Planning: A Hypermedia Co-Oparative Approach, Taylor Francis London and New York

Applied Statistics and Computation

Course Code: GI 103P

Credit 4

Unit-1 Basic of Applied Statistics

- 1.1 Data Collection: Primary and Secondary data, collection of data and frequency distribution. Relative and percentrelative frequencies, discrete and cumulative frequency distribution
- 1.2 Data type and representation: Continuous and discrete data, frequency diagrams. Graphicalrepresentation of data
- 1.3 Concept of Sets and Subsets, Sequences, Operations on Sets; Counting sequences, and subsets (permutations and combinations)
- 1.4 Algorithms and Psudocode: Induction and Recursion: Division in the integers: Matrices

Unit-2 Descriptive Statistics

- 2.1 Measurement of central tendency, Mean, Mode, Median, Geometric mean and Harmonic Mean
- 2.2 Measures of variations Range, Quintile deviations, Mean deviation, Standard deviation and variance, Coefficient of variations
- 2.3 Probability concepts Additions and multiplication laws, Basic problems on these laws
- 2.4 Concept of random variables and probability distribution.

Unit-3 Correlation & Regression Analysis and Sampling

- 1.1 Introduction to correlation: Karl Pearson's Coefficient of Correlation, Auto Correlation
- 1.2 Introduction to regression: Linear regression analysis; Curve fitting concept of multiple regression analysis
- 1.3 Theory of Sampling Meaning of a sample, Universe, static and parameters. Sampling distribution, standard error
- 1.4 Different sampling techniques: scruple random sample, standard random sample, systematic, cluster and multi-storage sample

Computer Basics and Programming

Course Code: GI 104P

Unit-1 Computer Basics

- 1.1 Window, OS, Paint, Notepad
- 1.2 Microsoft Excel
- 1.3 Microsoft Word and Power Point
- 1.4 Microsoft Access

Unit-2 Programming language

- 2.1 Basic Concept of Programming Assemblers, Compiler, principle of programming
- 2.2 Programme Construction: Flowchart, algorithms, pseudo codes, data structure
- 2.3 Approach to programming (top-down, bottom-up and divide & Conquer) Modular programming
- 2.4 Programming vs. Customization

Unit-3 Basic programming

- 3.1 Basic programming with C
- 3.2 Basic programming with C++
- 3.3 Basic programming with Python
- 3.4 Advanced programming concepts

Credit 4

Semester II

Photogrammetry and Digital Image Processing

Course Code: GI 201T

Credit 4

Unit-1: Basic of Photogrammetry

- 1.1 Types of photogrammetry, image acquisition (from aerial& satellite platform)
- 1.2 Image acquisition from satellite platform, geometric distortion in imagery
- 1.3 Principle and disciplines of photogrammetry, Geometry and scale of aerial photograph
- 1.4 Principles of stereoscopic vision, stereoscopic 3D viewing, lens stereoscope, mirror stereoscope

Unit-2: Pre-processing and Enhancement

- 2.1 Satellite data encoding and decoding, modulation, acquisition, storage and retrieval, generation of digital data formats
- 2.2 Image processing (Pre-processing), Image correction (radiometric, geometric correction and image enhancement)
- 2.3 Image Enhancement
- 2.4 Concept of parallax

Unit-3:Image transformation and processing

- 3.1 Image transformation (PCT, FT, CST, fusion, Indices)
- 3.2 Image classification (Supervised & Unsupervised)
- 3.3 Accuracy assessment (Kappa test, Contingency Matrix)
- 3.4 Post classification processing (Filtering and vectorization)

Introduction to Geographical Information System & spatial modeling

Course Code: GI 202T

Credit 4

Unit-1: History and Principle of Geographical Information System

- 1.1 Definition, scope and subject matter of Geographical Information System (GIS), basic concept of GIS: Geographical space, spatial data and information
- 1.2 Components of GIS, Variables-point, lines, polygon, Functionality of GIS
- 1.3 Spatial data modelling (Raster and Vector), TIN, DEM, DTM, topology etc
- 1.4 Application and Limitation of GIS

Unit-2: Data Management in GIS

- 2.1 Data Capture and processing: Source of data, collection methods, topology, transformation, correction and accuracy
- 2.2 Data manipulation and Analysis: Basic spatial operations-vector and raster based point, line and area analysis: DEM
- 2.3 Proximity analysis, buffer, near and Thiessen polygon, GIS layer extraction, comparison of vector- and raster based data analysis (hillshade, viewshade, subtraction, interpolation)
- 2.4 Concept of Boolean algebra, introduction to overlay in GIS, topological and graphical overlay, dissolve analysis

Unit-3:GIS Modelling for decision support

- 3.1 Model of spatial processes: Conceptual model, mathematical model, models of physical and environmental process
- 3.2 Digital cartography: Concept, advantage and disadvantage, dynamic/Interactive Cartography, VRML, hyper maps, Open GIS: Implementation-generic and knowledge based mapping, Inter-operable and Entrepreneur GIS
- 3.3 2D and 3D Visualisation of geospatial data
- 3.4 Digital mapping: Cartographic design, Visual Variables, Map Lettering, Map Completions, Generalization, Map composition, Multivariate and Dynamic Mapping and Map projection

Thermal, Microwave Remote Sensing and Application

Course Code: GI 203T

Credit 4

Unit-1: Concept of thermal energy

- 1.1 Atmospheric interaction
- 1.2 Black body radiation and related concept (radiant Vs kinetic temperature)
- 1.3 Thermal remote sensing sensor
- 1.4 Concept of thermal imaging

Unit -2: Basic of Microwave Remote Sensing (RS)

- 2.1 Passive Microwave RS
- 2.2 Principle of active microwave RS (RADAR)
- 2.3 Viewing geometry, spatial resolution, RAR, SAR
- 2.4 Geometric and sensor properties of RADAR (polarization, speckle, layover, foreshortening, RADAR shadow, surface roughness, electric properties)

Unit-3: Processing of thermal and microwave image

- 3.1 Visual interpretation, temperature mapping, multispectral thermal image interpretation
- 3.2 Visual interpretation of RADAR Image
- 3.3 Calibration and processing of RADAR image
- 3.4 Application of thermal and microwave Remote Sensing

Digital Image Processing

Course Code: GI 204P

Unit-1: Pre-processing and Enhancement

- 1.1 Radiometric corrections
- 1.2 Geometric corrections (Image to image and image to ground)
- 1.3 Brightness and contrast enhancement
- 1.4 Image filtering techniques

Unit-2: Image transformation

- 2.1 Arithmetic operation (image subtraction, addition, multiplication)
- 2.2 Image Index (Vegetation, NDVI, SAVI, Built up, mineral exploration)
- 2.3 Colour space transformation (PCT, furrier transformation)
- 2.4 TCT (crop growth, image fusion)

Unit-3: Image Classification

- 3.1 Basic supervised and unsupervised classification
- 3.2 Index image and change image classification
- 3.3 Multi-temporal image classification
- 3.4 Accuracy Assessment, post classification, filtering and vectorization

Credit 4

Digital Photogrammetry

Course Code: GI 205P

Credit 4

Unit-1: Digital stereo model

- 1.1 Non-orientation DSM
- 1.2 Orientation DSM
- 1.3 Accuracy of DSM
- 1.4 Handling 3D cursor with 3D mouse

Unit-2: Photogrammetric Application

- 2.1 3D vector collection
- 2.2 DEM and contour creation
- 2.3 Orthorectification
- 2.4 3D scene modelling

Unit-3: Application of UAV (Drone) in Digital Photogrammetry

- 3.1 Planning and execution of photographic flight and flight planning from UAV
- 3.2 Data transformation and mosaicking
- 3.3 Block triangulation and DSM
- 3.4 3D feature extraction and DEM creation