

BANKURA UNIVERSITY

Curriculum and Credit Framework for **Computer Science**

(Basic, Honours and Honours with Research)
With effect from the Academic Year 2023-2024

SEMESTER-V												
Sl.	Course Code	Course Title	Credit	Marks			No. of Hours					
No.				IA	ESE	Total	L	T	P			
1	CSC/501/	Discrete Mathematics	4	10	40 T:40 L:00	50	4	0	0			
	MJC-09											
2	CSC/502/	Computer Graphics	4	10	40 T:25 L:15	50	3	0	2			
	MJC-10			10								
3	CSC/503/	Web Technologies	4	10	40 T:25 L:15	50	3	0	2			
	MJC-11			10								
4	CSC/504/	Software Engineering	4	10	40 T:40 L:00	50	4	0	0			
	MJC-12											
5	CSC/505/	Discrete Mathematics	4	10	40 T:40 L:00	50	4	0	0			
	MN-05			10								
Total in Semester-V			20			250						

SEMESTER-VI											
Sl.	Course Code	Course Title	Credit	Marks			No. of Hours				
No.				IA	ESE	Total	L	T	P		
1	CSC/601/	Design and Analysis of Algorithms	4	10	40 T:25 L:15	50	3	0	2		
	MJC-13	Design and Analysis of Algorithms									
2	CSC/602/		4	10 40		- 50	4	0	0		
	MJC-14	Theory of Computations			T:40 L:00						
3	CSC/603/	Information Security	4	10	40 T:25 L:15	50	3	0	2		
	MJC-15	using Cryptography			1.23						
4	CSC/604/	Artificial Intelligence	4	10	40 T:25 T:15	50	3	0	2		
	MJC-16	Artificial intelligence			1.23	30					
5	CSC/605/		4	10	40 T-25 1-15						
	MN-06	Design and Analysis of Algorithms			T:25 L:15	50	3	0	2		
	Total in Semester-VI				•	250					

COMPUTER SC (MJC-9, MN-5) Credit 04 (Theory = 04)

Discrete Mathematics L/T/P: 4/0/0

Course Learning Outcomes:

After successful completion of the course a student will be able to:

- Understand the basic mathematical problems in Computer Science and interdisciplinary areas
- Understand the basics of combinatory
- Understand some basic properties of graphs and related discrete structures
- Apply mathematical logic, mathematical proofs, and algorithmic thinking in problem solving.

THEORY

Unit-I: Introduction

- o Sets finite and Infinite sets, uncountably Infinite Sets;
- o Functions, Relations, Properties of Binary Relations, Closure, Partial Ordering Relations;
- o counting Pigeonhole Principle,
- o Permutation and Combination;
- o Mathematical Induction,
- o Principle of Inclusion and Exclusion.
- o Rough Sets Versus Fuzzy Sets (in terms of basic properties only)

Unit-II: Growth of Functions

- o Asymptotic Notations,
- o Summation formulas and properties, Bounding Summations,
- o Approximation by Integrals

Unit-III: Recurrences

- o Recurrence Relations, generating functions, Linear Recurrence Relations with constant coefficients and their solution, Substitution Method,
- o Recurrence Trees
- o Master Theorem.

Unit-IV: Graph Theory

- Basic Terminology, Models and Types, multigraphs and weighted graphs,
- o Graph Representation, Graph Isomorphism, Connectivity, Euler and Hamiltonian Paths and Circuits, Planar Graphs, Graph Coloring,
- Trees, Basic Terminology and properties of Trees, Introduction to Spanning Trees, Minimum Spanning Tree (MST) and its properties.

Unit-V: Propositional Logic

o Logical Connectives, Well-formed Formulas, Tautologies, Equivalences, Inference Theory.

- 1. C.L. Liu, D.P. Mahapatra, *Elements of Discrete mathematics*, 2nd Edition, Tata McGraw Hill, 1985.
- 2. Kenneth Rosen, Discrete Mathematics and Its Applications, Sixth Edition, McGraw Hill, 2006.
- 3. T.H. Coremen, C.E. Leiserson, R. L. Rivest, *Introduction to Algorithms*, 3rd edition, Prentice Hall on India, 2009.
- 4. M. O. Albertson and J. P. Hutchinson, *Discrete Mathematics with Algorithms*, John Wiley Publication, 1988.
- 5. J. L. Hein, *Discrete Structures, Logic, and Computability*, 3rd Edition, Jones and Bartlett Publishers, 2009.
- 6. D.J. Hunter, Essentials of Discrete Mathematics, Jones and Bartlett Publishers, 2008.

Course Learning Outcomes:

After successful completion of the course a student will be able to:

- Gain insight of functioning of graphics hardware
- Understand different algorithms to generate 2D and 3D objects in graphics
- Create various graphics effects using computer

Computer Graphics

L/T/P: 3/0/2

THEORY

Unit-I: Introduction

o Basic elements of Computer graphics, Applications of Computer Graphics.

Unit-II: Graphics Hardware

o Architecture of Raster and Random scan display devices, input/output devices.

Unit-III: Fundamental Techniques in Graphics

- o Raster scan line, circle and ellipse drawing, thick primitives, Polygon filling, line and polygon
- o clipping algorithms, 2D and 3D Geometric Transformations, 2D and 3D Viewing
- o Transformations Projections- Parallel and Perspective, Vanishing points.

Unit-IV: Geometric Modeling

o Representing curves & Surfaces.

Unit-V: Visible Surface determination

o Hidden surface elimination.

Unit-VI: Surface rendering

o Illumination and shading models. Basic colour models and Computer Animation.

LABORATORY

(using C or Python)

- 1. Write a program to implement Bresenham's line drawing algorithm.
- 2. Write a program to implement mid-point circle drawing algorithm.
- 3. Write a program to clip a line using Cohen and Sutherland line clipping algorithm.
- 4. Write a program to clip a polygon using Sutherland Hodgeman algorithm.
- 5. Write a program to apply various 2D transformations on a 2D object (use homogeneous coordinates).
- 6. Write a program to apply various 3D transformations on a 3D object and then apply parallel and perspective projection on it.
- 7. Write a program to draw Hermite/Bezier curve.

- 1. J.D. Foley, A. Van Dam, Feiner, Hughes Computer Graphics Principles & Practice, 2nd edition, Addison Wesley, 1990.
- 2. D. Hearn, Baker, Computer Graphics, Prentice Hall of India, 2008.
- 3. D.F. Rogers, Procedural Elements for Computer Graphics, McGraw Hill, 1997.
- 4. D.F. Rogers, Adams, Mathematical Elements for Computer Graphics, 2nd edition, McGraw Hill, 1989.

COMPUTER SCIENCE (MJC-11)

Credit 04 (Theory = 03, Practical = 01)

Course Learning Outcomes:

After successful completion of the course a student will be able to:-

- Design different types of Client-side and Server-side applications.
- Design Web-enabled applications using JavaScript Programming, Java Server Pages, and Java Database Connectivity.

Web Technologies

L/T/P: 3/0/2

- Work with Java Beans.
- Understand and implement different applications like stand-alone applications, web applications etc.

.....

THEORY

Unit-I: JavaScript

o Data types, operators, functions, control structures, events, and event handling.

Unit-II: JDBC

- o JDBC Fundamentals, Establishing Connectivity and working with connection interface,
- Working with statements, Creating and Executing SQL Statements,
- o Working with Result Set Objects.

Unit-III: JSP

- o Anatomy of a JSP Page, JSP Processing, JSP Application Design with MVC,
- o The Problem with Servlets, The Environment,
- o Implicit JSP Objects, Conditional Processing, Displaying Values,
- Using an Expression to Set an Attribute, Declaring Variables and Methods, Error Handling and Debugging,
- o Sharing Data Between JSP Pages, Requests, and Users, Database Access.

Unit-IV: Java Beans

 $\circ\quad Java\ Beans\ Fundamentals, JAR\ files, Introspection, Developing\ a\ Simple\ Bean, Connecting\ to\ DB$

LABORATORY

(JavaScript)

Create event-driven programs for the following:

- 1. Print a table of numbers from 5 to 15 and their squares and cubes using alert.
- 2. Print the largest of three numbers.
- 3. Find the factorial of a number n.
- 4. Enter a list of positive numbers terminated by zero. Find the sum and average of these numbers.
- 5. A person deposits Rs 1000 in a fixed account yielding 5% interest. Compute the amount in the account at the end of each year for n years.

- 1. Ivan Bayross, Web Enabled Commercial Application Development Using Html, Dhtml, JavaScript, Perl Cgi, BPB Publications, 2009.
- 2. Cay Horstmann, BIG Java, Wiley Publication, 3rd Edition, 2009.
- 3. Herbert Schildt, Java 7, The Complete Reference, 8th Edition, 2009.
- 4. Jim Keogh, The Complete Reference J2EE, TMH, 2002.
- 5. O'Reilly, Java Server Pages, Hans Bergsten, Third Edition, 2003.

COMPUTER SCIENCE (MJC-12) Credit 04 (Theory = 04)

Course Learning Outcomes:

After successful completion of the Course a student will be able to:-

- Get the basic knowledge and understanding of analysis and design of complex systems
- Incorporate different attributes of software engineering to develop bug-free software in costeffective manner

Software Engineering

L/T/P: 4/0/0

- Work as an active member or leader of software engineering teams.
- To manage time, processes, and resources effectively by prioritizing competing demands to achieve their goals.
- Identify and analyze the common threats in each domain

THEORY

Unit-I: Introduction

- The Evolving Role of Software, Software Characteristics, Changing Nature of Software
- Software Engineering: Program versus Software, Objective and Goal, understanding software as a Layered Technology,

Unit-II: Software Process Models

- o Models: Frameworks and Properties
- o Waterfall Model (classical and iterative)
- o Incremental Process Model
- o Spiral Model
- o Prototype Model
- Hybridization and Model Selection

Unit-III: Requirement Analysis

- o Software Requirement Analysis, Initiating Requirement Engineering Process, Requirement Analysis and Modeling Techniques, Flow Oriented Modeling,
- o Need for SRS, Characteristics, and Components for SRS.

Unit-IV: Software Project Management

- o Basic Concepts
- o COCOMO Model

Unit-V: Risk Management

 Software Risks: types with examples, Risk Identification, Risk Projection and Risk Refinement, RMMM Plan.

Unit-VI: Quality Management

 Quality Concepts, Software Quality Assurance, Software Review, Metrics for Process and Project.

Unit-VII: Design Engineering

- Design Concepts, Architectural Design Elements, Software Architecture, Design at the Architectural Level and Component Level
- o Mapping of Data Flow into Software Architecture,
- o Modeling Component Level Design.

Unit-VIII: Capability Maturity Models

o CMM and CMMI

Unit-IX: Testing Strategies

- o Software Testing Fundamentals,
- o Strategic Approach to Software Testing,
- Test Strategies for Conventional Software: Validation Testing, System testing, Black-Box Testing, White-Box Testing and their type, Integrated Testing, Mutation Testing, Path testing: Linearly Independent Paths, Cyclomatic complexity (CC) and CC determination for a sample program.

.....

- 1. R S Pressman, Software Engineering: A Practitioner's Approach (7th Edition), MGH, 2009
- 2. P. Jalote, An Integrated Approach to Software Engineering (2nd Edition), NPH, 2003
- R. Mall, Fundamentals of Software Engineering (2nd Edition), PHI, 2004
 I. Sommerville, Software Engineering (10th Edition), Pearson Education, 2017

COMPUTER SC (MJC-13, MN-6) Credit 04 (Theory = 03 + Practical = 01)

Design and Analysis of Algorithms L/T/P: 3/0/2

Course Learning Outcomes:

After successful completion of the course, a student will be able to:-

- Gain engineering insight into problems
- Design algorithms as a mathematical process for problem-solving
- Design algorithms to solve different types of problems in computer science and interdisciplinary branches of science and engineering
- To learn how to analyze algorithms and estimate their worst-case and average-case performance (for simple to moderate problems)

THEORY

Unit-I: Introduction

o Basic Design and Analysis techniques of Algorithms, Correctness of Algorithm.

Unit-II: Algorithm Design Techniques

o Iterative techniques, Divide and Conquer, Dynamic Programming, Greedy Algorithms.

Unit-III: Sorting and Searching Technique

- o Various sorting techniques: Bubble Sort, Insertion Sort, Selection Sort, Merge Sort;
- o Advanced Sorting techniques: Heap Sort, Quick Sort;
- o Sorting in Linear Time: Bucket Sort, Radix Sort and Count Sort.
- o Searching Techniques: Linear, Binary
- o Median & Order Statistics,
- o Complexity analysis.

Unit IV: Lower Bounding Techniques

Decision Trees

Unit-V: Balanced Trees

o AVL Tree, Red-Black Trees

Unit-VI: Advanced Analysis Technique

Amortized analysis

Unit-VII: Graphs

o Graph Algorithms: Breadth First Search, Depth First Search, Minimum Spanning Trees

Unit-VIII: String Processing

o String Matching, KMP Technique

Unit-IX: Computational Complexity

o P, NP, NP-complete, NP-hard

LABORATORY

(using C or Python)

1. Sorting Algorithms Implementation:

o Implement Insertion Sort, Merge Sort, Heap Sort, Randomized Quick Sort, Radix Sort.

2. **Red-Black Tree Implementation:**

o Create a Red-Black Tree and perform the following operations like Insert/deletion of a node; Search for a number & also report the colour of the node containing this number.

3. Graph Algorithms Implementation:

 LCS (Longest Common Subsequence) detection for two given sequences; Breadth-First Search & Depth-First Search in a graph, Minimum spanning tree of a graph.

4. Algorithm Performance Analysis:

- o For the algorithms from Sl.No. 1 to 3, test run the algorithm on 100 different inputs of sizes varying from 30 to 1000.
- o Count the number of comparisons and draw the graph..

- 1. T H. Cormen, C E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algo, PHI, 2E
- 2. S. Sahni & A.V. Aho, *Computer Algorithms: Introduction to Design and Analysis*, Pearson, 3rd Edition, 1999.

COMPUTER SC (MJC-14)

Credit 04 (Theory = 04)

Theory of Computations L/T/P: 4/0/0

Course Learning Outcomes:

After successful completion of the course, a student will be able to:-

- Describe different elements of automata theory and formal languages.
- Design different mathematical models associated with computation theory.
- Solve different problems of machine automaton.
- Apply their understanding of key notions through complex problem-solving.

THEORY

Unit-I: Languages:

 Alphabets, String, Language, Basic Operations on Language, Concatenation, Kleene Plus and Kleene Star

Unit-II: Finite Automata and Regular Languages:

- o Regular Expressions, Transition Graphs
- o Finite Automata: without output (NFA, DFA), with output (Mealy, Moore)
- o NFA to DFA Conversion
- o NFA to Regular Expression Conversion: State Elimination Method
- o Regular languages and their relationship with finite automata
- o Pumping lemma and closure properties of regular languages

Unit-III: Context-Free Languages:

- o Context-Free Grammars, Parse Trees, Ambiguities in Grammars and Languages
- o Pushdown Automata (Deterministic and Non-Deterministic)
- o Pumping Lemma, Properties of Context-Free Languages

Unit-IV: Turing Machines and Models of Computation:

- o RAM, Turing Machine as a model of computation, Universal Turing Machine
- o Language acceptability, Decidability, Halting Problem
- o Recursively Enumerable and Recursive Languages, Un-decidable problems

- 1. Daniel I.A. Cohen, *Introduction to Computer Theory*, John Wiley, 1996.
- 2. Lewis & Papadimitriou, Elements of the Theory of Computation, PHI, 1997.
- 3. Hopcroft, Aho, Ullman, *Introduction to Automata Theory, Languages & Computation*, 3rd Edition, Pearson Education, 2006.
- 4. P. Linz, *An Introduction to Formal Language and Automata*, 4th Edition, Jones & Bartlett, 2006.

COMPUTER SC (MJC-15) Information Security using Cryptography Credit 04 (Theory = 03, Practical = 01) L/T/P: 3/0/2

Course Learning Outcomes:

After successful completion of the course, a student will be able to:-

- Understand and describe various public key as well as secret key cryptographic algorithms.
- Implement different cryptographic algorithms in the laboratory.
- Learn about different cyber-security measures.

THEORY

Unit-I: Introduction

o Security Attacks, Cyber Criminals, Security Services, Security Mechanisms.

Unit-II: Cryptographic Techniques

- Classical Ciphers: Transposition Ciphers, Confusion, Diffusion, Symmetric, Asymmetric Cryptography.
- DES, Modes of DES, Uses of Encryption, Discrete Logarithm, Diffie-Hellman Key Exchange.
- o RSA Algorithm, Hash Function, Digital Signatures, Digital Certificates.

Unit-III: Program Security

o Secure programs, Malicious program and code, Virus, Trap doors, Salami attacks.

Unit-IV: Threats in OS

o Memory and Address Protection, Access Control, File Protection, User Authentication

Unit-V: Database Security

o Requirements, Reliability, Integrity, Sensitive Data, Inference, Multilevel Security.

Unit-VI: Security in Networks

o Threats in Networks, Security Controls, Firewalls, Intrusion Detection Systems, Secure Emails.

LABORATORY

(using C or Python)

- 1. Demonstrate the use of Network tools: ping, ipconfig, ifconfig.
- 2. Write a program to perform encryption and decryption of Caesar cipher.
- 3. Write a program to perform encryption and decryption of Rail fence cipher.
- 4. Design and implement product ciphers using substitution and transposition ciphers.
- 5. Write a program to perform encryption and decryption of affine cipher.
- 6. Implement Diffie-Hellman Key exchange algorithm.
- 7. Implement RSA public key cryptosystem.
- 8. Demonstrate sending of a digitally signed document.
- 9. Demonstrate sending of a protected worksheet.
- 10. Demonstrate use of steganography tools.

- 1. C. P. Pfleeger, S. L. Pfleeger, Security in Computing, Prentice Hall of India, 2006.
- 2. B. A. Forouzan, Introduction to Cryptography and Network Security, McGraw Hill.
- 3. W. Stallings, Network Security Essentials: Applications and Standards, 4/E, 2010.

COMPUTER SC (MJC-16)

Credit 04 (Theory = 03, Practical = 01)

Course Learning Outcomes:

After successful completion of the Course, a student will be able to:-

- Understand and describe AI-based problem-solving and searching algorithms.
- Gain insight of different knowledge representation techniques.
- Solve basic AI-problems using PROLOG programming.

Artificial Intelligence

L/T/P: 3/0/2

THEORY

Unit-: Introduction

- o Introduction to Artificial Intelligence, Background, and Applications.
- o Turing test and Rational Agent approaches to AI.
- o Introduction to Intelligent Agents, structure, behavior, and environment.

Unit-II: Problem Characteristics and Searching Techniques

- o Problem characteristics and its variations.
- o Production Systems, Control Strategies, Breadth-First Search, Depth-First Search.
- o Hill Climbing and its variations.
- Heuristic Search Techniques: Best First Search, A*, Min-Max, and Alpha-Beta pruning, IDA*.
- o Means-End Analysis, Introduction to Game Playing.

Unit-III: Knowledge Representation

- o Conceptual Level Knowledge: Predicate Logic, Resolution Principle, Unification, Semantic Nets.
- o Inferencing: Forward and Backward Chaining.
- o Frames and Scripts, Production Rules, Conceptual Graphs.

Unit-IV: Dealing with Uncertainty and Inconsistencies

- o Non-Monotonic Reasoning.
- o Probabilistic Reasoning, Bayesian Probabilistic Inference.
- o Fuzzy Logic.

Unit-V: Introduction to Natural Languages

o Parsing Techniques, Context-Free and Transformational Grammars, Recursive and Augmented Transition Nets.

Unit-VI: Programming Language: Logic (PROLOG)

LABORATORY

- 1. Write a Prolog program to calculate the sum of two numbers.
- 2. Write a Prolog program to find the maximum of two numbers.
- 3. Write a Prolog program to calculate the factorial of a given number.
- 4. Write a Prolog program to calculate the nth Fibonacci number.
- 5. Write a Prolog program to insert an element into a list.
- 6. Write a Prolog program to remove the Nth item from a list.
- 7. Write a Prolog program to remove all occurrences of an element from a list.
- 8. Write a Prolog program to implement append for two lists.
- 9. Write a Prolog program to implement palindrome checking.
- 10. Write a Prolog program to implement maxlist (List, Max) so that Max is the greatest number in the list of numbers.
- 11. Write a Prolog program to implement sumlist (List, Sum) so that Sum is the sum of a given list of numbers.
- 12. Write a Prolog program to implement two predicates evenlength (List) and oddlength (List) so that they are true if their argument is a list of even or odd length, respectively.
- 13. Write a Prolog program to compute GCD and LCM of two numbers
- 14. Write a Prolog program to implement semantic nets

RECOMMENDED BOOKS:

- 1. Dan W. Patterson, Introduction to AI and Expert Systems, PHI, 2007.
- 2. Rich & Knight, Artificial Intelligence, Tata McGraw Hill, 2nd Edition, 1991.